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Analysis of Rectangular Waveguide

Discontinuities by the Method of Lines
Wilfrid Pascher, Member, IEEE, and Reinhold Pregla, Senior Member, IEEE

Abstract—An efficient analysis of discontinuities in the rectan-
gular waveguide is presented using the method of lines with one-

dimensional discretization. As the line numbers in the incoming

and outgoing waveguides are automatically correctly chosen in
the method of lines, relative convergence is avoided. Scattering
parameters for the E-plane step discontinuity are determined and
an equivalent circuit for the diaphragm, the displacement, and a
step with diaphragm is presented.

I. INTRODUCTION

D ISCONTINUITIES in rectangulw waveguides (Fig. 1)

are commonly analyzed by the field expansion method

[1], [2]. Another rigorous analysis technique, the method of

lines, has been efficiently applied to various planar waveguide

structures [3]–[ 17]. Apart from its numerical efficiency, one of

the advantages of the method of lines is its easy formulation.

In this paper we apply the method of lines to rectangular

waveguides discontinuities in the E-, or H-plane. We have to

discretize the wave equation in one transverse direction only,

since we use the known field behaviour in the other transverse

direction. Posts and diaphragms have been already analysed

in this way by Schulz [6], [7].

The 13-plane step discontinuity (Fig. 2) is modelled using

plain one-dimensional discretization. First the discretized coor-

dinate is transformed to the spectral domain and an analytical

solution is obtained for the longitudinal direction. In order

to match the fields at the discontinuity we transform back

to spatial domain. Finally the transmission and scattering

matrices are computed from the incoming and outgoing waves.

As the last two steps, namely the matching and the subsequent

matrix analysis, differ from the other applications of the

method of lines, these are treated in more detail in this paper.

— The analysis of the displacement and the diaphragm is

similar, but the fact that none of the waveguide cross sections

is completely included in the other needs special consideration.

As examples for the applicability of the approach, the

scattering parameters (or the equivalent circuits) for both the
E-plane step discontinuity (with and without diaphragm) and

the displacement (Fig. 1) are presented. In the following only

E-plane discontinuities are investigated, since a generalisation

to H-plane discontinuities is straightforward. Non-equidistant

discretization can be incorporated easily.
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Fig. 1. Discontinuities m rectangular waveguides.
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Fig. 2. Discretization of a step discontinuity.

II. FIELD EQUATIONS FOR E-PLANE JUNCTIONS

The only modes arising from the junctions of’ Fig. 1 by

excitation with TEIO to waves are TE1nto –X modes. The

electromagnetic fields are derived from the potential

with a time dependence exp(jwt), the unit vector a~ and

~. = T/a. The waveguide width a is assumed to be constant

for the whole structure, and the coordinates and lengths are

normalized by z = koz etc.

The transverse field components run

The potential ~ must fulfill the Neumann condition at all

metallic boundaries.

III. MODELLING OF A STEP DISCONTINUITY

Using the above field equations the waveguide step shown

in Fig. 2 is analyzed. Discretization and transformation of the

scalar potential are performed as usual in the method of lines

[3], [4].

A. First Step: Discretization of the Wave Equation

Both waveguides (Region I, II) are discretized with the

same discretization distance hv. Different line numbers ~1

and AJ1l result, which are approximate y proportional to the

waveguide heights. As the mode numbers Mi are equal to the
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line numbers lV,, the criterion to avoid relative convergence

after Mittra et al. [8]

Mz/Ml = b2Jbl (3)

is fulfilled naturally in the MoL.

We discretize the Helmholtz equation

a%J E@
~+~ –~:~+Erlj=O (4)

using the following finite difference expression for the second

derivative

82$ +i+l – W2 + ‘JW1 _ ~~,)-2D ~ (5)
* ;% h; YY

to obtain

dz~
~ - (~~1 - (fiV)-2DVV - Sri)@= O (6)

The difference operator DVY has different sizes iV1 and N1l in

the two regions. As Dvy is a tridiagonal matrix, the discretized

wave equation (6) is a system of coupled ordinary equations

for the discretized potential +.

B. Second Step: Transformation of the Potentials

We transform to diagonal form by

(fi,)-2’I’’13vgT = -X2
Y

(7)

where t denotes transpose. The transformation matrices T1,ll
-1,11

and the eigenvalue matrices Av are different for the two

waveguides. The difference operators DYY and the transfor-

mation matrices T are calculated according to the Neumann

boundmy conditions on both side walls [4].

We transform the discretized wave (6) and obtain a system

of uncoupled ordinary differential equations

d2$
——
dg2 { )/

X~I+3~–&rI ij=o (8)

r2

for the transformed potential ~ = Tt+ with the propagation

constants I’, which are diagonal matrices.

The transformed potentials result as the solutions of the

wave equation (8):

Waveguide I Waveguide II

@I = e–~’2Ar + eT’2B1 711 = e~l’Zf%ll + e–~l’ZB1l

C. Third Step: Field Matching at the Step z = O

The transverse field components Ey and Hz, that means

+ and 0~/~,z must be matched. If@ is matched on all the

discretization lines, @O/Oy and thus Hy is also matched. In

the transform domain we obtain at z = O

,JI=A1+B1 @ = AII + BII

a@l
- II

8.2

– –~l(A1 – B1) ~ = I’ll(A1l – B1l)

In the vectors AI and AII only the first element is non-zero

for excitation with the fundamental mode.

The matching has to be achieved in spatial domain af-

ter the inverse transformation. To this end we partition the

transformation matrix T1l into two submatrices

rmy 7

(9)

T~l corresponds to the aperture part of waveguide II opposite

waveguide I (full lines in Fig. 2) and hence has the same

number of rows N; = N1 as T1. T~I corresponds to the
front plate(broken lines in Fig. 2) with N~I = NII – NI

The two matching steps are

1)

2)

Matching of Hz, that means of ~, as the factor

(G. – 1:) sin ~~z (see (’2)) is the same for both
waveguides and for all components of Hz. This yields

TI (AI+ B1) = T:l(A1l + B1l) (lo)

Matching of Ey, that means of ~ (see (2)), yields

in the aperture I-II

–T1rl (AI – BI) = TfII’ll (AII – BII) (11)

on the front plate II

o= T;lI’II(AII – BII) (12)

D. Transmission Matrix and Scattering Matrix

For the calculation of the transmission matrix we combine

the matching equations (10), (11) to the following system

()A1+B1=TB1l+A1l (13)

A1 – B1 = r;l’l?]rll (B1l – A1l) (14)

with the abbreviation T = T~T;l (see App.). We solve this

system of equations for the wave coefficients in the smaller

waveguide I. With (12) we obtain the transmission matrix

equation

with the

B1l

1 (15)

AII

(16)

Using (15) the incoming and outgoing waves at the smaller

waveguide I are computed from the incoming and outgoing

waves at the larger waveguide II. To compute the waves

reversely, namely from the smaller waveguide I to the larger

II, is only possible with N1l – N1 additional equations. An

alternative way is to use the scattering matrix.

For the calculation of the scattering matrix we solve the

transmission matrix (15) for B1 and BII. For the amplitudes

of the outgoing waves we obtain
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Fig, 3. Discretizatimr of a displacement.

B1 is computed from the last line (

!59
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■
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A

)f (15).

For the calculation of the scattering matrix for the funda-

mental modes, which is defined according to

KJ=E:lEI “8)

we set the excitations A; and A~I to zero individually.

IV. MODIFICATIONS FOR DISPLACEMENT AND DIAPHRAGM

In the case of a diaphragm or a displacement, (Fig. 3) none

of the two waveguides is completely included in the other one.

This is the only difference to the step discontinuity, hence

the analysis runs as above with the following modifications.

We have to distinguish an aperture region (full lines) and an

additional front plate (broken lines) also for the waveguide I

in contrast to the step discontinuity (Fig. 2).

Hence we have to partition the transformation matrix T1

as well:

[1
T1 = ;; (19)

with T; for the aperture and T; for the front plate. This results

in two changes in the analysis. First we replace T1 by T; in

matching equations (10) to (12) and second we obtain the

additional equation

on the front plate I T;I’I (AI – BI) = O (20)

Equation (14) is still valid, if T is replaced by T’ = T~tT~I.

But the equation corresponding to (10) cannot be converted

into the form of (13) any more, as T; itself is not invertible.

The number of equations for AI and BI is no longer sufficient

to calculate the transmission matrix.

We are still able to determine the scattering matrix, how-

ever, in an analogous way as above.

With

T’ = r’;lT’rll

and the following substitution

T+ - T~ = ~(TfI + T~I’:lT’I’ll)

which considers T; as an additional factor, we obtain by

reordering of (14) and from the first line of (15):

I-I T’ 1 FI T’ 1
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Fig. 4. Symmetric E-plane step discontinuity. Magnitude of the reflection

coefficient as a function of normalized frequency. Cut-off frequencies are

marked. Wkh free space wavelength AO. 000 MMT [1].
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Fig. 5. Side view and equivalent circuit of a diaphragm.

Thus the amplitudes of the outgoing waves are given by:

B1 is computed from the first line of (21) and the scattering

matrix of the fundamental modes ist determined by relation

(18) again.

V. RESULTS

The scattering parameters or the resulting equivalent circuit

parameters for various discontinuities are presented and com-

pared with results from literature. For the symmetric E-plane

step discontinuity the magnitude of the reflection coefficient

is given in Fig. 4 as a function of normalized frequency. The

agreement with the mode matching technique (MMT) [1] is

good, even for the marked values of the cut-off frequencies.

The next three structures are analyzed with the approach

of Section IV. For the step discontinuity with diaphragm in

a parallel plate wavegude (Fig. 7) the junction susceptance B

normalized with respect to the TEM admittance Y~ of the

first waveguide is given by

This formula is also valid for the diaphragm alone (Fig. 5). The

results in Fig. 6 are in very good agreement with Marcuvitz

[8].

In Fig. 7 the normalized susceptance of a step with a

diaphragm is compared with results from the conservation of
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F1g.7. Step_with a diaphragm in a pmallel plate waveguide. Normalized
susceptance B versus diaphragm height. ●[1 O]–––[11].

complex power technique (CCPT) [10] and the finite element

method (FEM) [11]. The deviation of two data points from the

CCPT is probably due to a distortion in the diagram in [10].

In Table I excellent agreement (better than 0.04%) is found

with the MMT [2] for the shunt reactance of a displacement

(Fig. 8). These results were obtained for an average line

number n’ = 50 in the discontinuity corresponding to [2].

Thus the convergence of the method of lines is very good.

VI. CONCLUSION

The principles of the E-plane junction analysis by the MoL,

are demonstrated. The modelling of a step discontinuity leads

to simple matrix equations, which are extended to displace-

ments and diaphragms in a straightforward manner. As the line

numbers in different waveguides are always chosen correctly

in the MoL, relative convergence is automatically avoided.

The equivalent circuit parameters of the above mentioned

discontinuities, and of the combination of step discontinuity

and diaphragm, agree very well with literature.

APPENDIX TRANSFORMATION MATRICES AND

CHARACTERISTIC VALUES FOR THE WAVEGUIDE STEP

The product of the transformation matrices T: and T~I

yields:

Fig. 8. Side view and equivalent circuit of a displacement.

TABLE I

NORMALIZED Sm REACTANCE X/ZO . b/Ag OF

AN E–PLANE OFFSET IN Tmm OF NORMALIZED

FREQUENCY2b/ Ag AND FRACTIONAL DISPLACEMENT b’/ b

UPPER VALUES: MoL; LOWER VALUES: MMT [2]

b’fb

.b
~

0.2

r0.1 0.063422

0.063407

0.3 0.14057

0.14058

0.5 0.29767

0.29769

r0.7 0.79752

0.79744

0.9 5.8077

5.8069

0.4

0.061026

0.061017

0.13272

0.13270

0.27957

0.27961

0.75734

0.75423

5.5943

5.5926

0.6 0.8

0.056362 0.047273

0.056353 0.047260

0.11799 0.091598

0.11795 0.091599

0.24607 0.18768

0.24608 0.18772

0.67323 0.52797

0.67308 0.52786

5.1707 4.3350

5.1699 4.3343

NI–1

X ~ (COS(~il + /%t) – COS(C%t – &)) (23)

1=0

with

rJ~~ = ( )“/+;: (i= O.. N1-l)

@k’=(z+++Ns)&‘k=O”””N1l-l)
The characteristic values run for NN boundaries

(24)
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