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Analysis of Rectangular Waveguide
Discontinuities by the Method of Lines

Wilfrid Pascher, Member, IEEE, and Reinhold Pregla, Senior Member, IEEE

Abstract—An efficient analysis of discontinuities in the rectan-
gular waveguide is presented using the method of lines with one-
dimensional discretization. As the line numbers in the incoming
and outgoing waveguides are automatically correctly chosen in
the method of lines, relative convergence is avoided. Scattering
parameters for the E-plane step discontinuity are determined and
an equivalent circuit for the diaphragm, the displacement, and a
step with diaphragm is presented.

I. INTRODUCTION

ISCONTINUITIES in rectangular waveguides (Fig. 1)
are commonly analyzed by the field expansion method
[11, [2]. Another rigorous analysis technique, the method of
lines, has been efficientlyapplied to various planar waveguide
structures [3]-[17]. Apart from its numerical efficiency, one of
the advantages of the method of lines is its easy formulation.

In this paper we apply the method of lines to rectangular
waveguides discontinuities in the F-, or I{-plane. We have to
discretize the wave equation in one transverse direction only,
since we use the known field behaviour in the other transverse
direction. Posts and diaphragms have been already analysed
in this way by Schulz [6], [7].

The E-plane step discontinuity (Fig. 2) is modelled using
plain one-dimensional discretization. First the discretized coor-
dinate is transformed to the spectral domain and an analytical
solution is obtained for the longitudinal direction. In order
to match the fields at the discontinuity we transform back
to spatial domain. Finally the transmission and scattering
matrices are computed from the incoming and outgoing waves.
As the last two steps, namely the matching and the subsequent
matrix analysis, differ from the other applications of the
method of lines, these are treated in more detail in this paper.
— The analysis of the displacement and the diaphragm is
similar. but the fact that none of the waveguide cross sections
is completely included in the other needs special consideration.

As examples for the applicability of the approach, the
scattering parameters (or the equivalent circuits) for both the
E-plane step discontinuity (with and without diaphragm) and
the displacement (Fig. 1) are presented. In the following only
E-plane discontinuities are investigated, since a generalisation
to H-plane discontinuities is straightforward. Non-equidistant
discretization can be incorporated easily.
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Fig. 1. Discontinuities 1n rectangular waveguides.
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Fig. 2. Discretization of a step discontinuity.

II. FIELD EQUATIONS FOR E-PLANE JUNCTIONS

The only modes arising from the junctions of Fig. 1 by
excitation with T Fqg to waves are T Eq,to —X modes. The
electromagnetic fields are derived from the potential

II, = ko_zzl’ sin A\, % a,
according to
E= '—jkov X Hh

noH:VXVXHh (1)

with a time dependence exp(jwt), the unit vector a, and
\. = 7/a. The waveguide width a is assumed to be constant
for the whole structure, and the coordinates and lengths are
normalized by Z = kpz etc.

The transverse field components run

E,=0 moH, = (e, — X2) sin X\, T - o

E, ~ jsin A,z - %% noHy = A\; cO8 AT - g—?

@)
The potential ¢y must fulfill the Neumann condition at all
metallic boundaries.

III. MODELLING OF A STEP DISCONTINUITY

Using the above field equations the waveguide step shown
in Fig. 2 is analyzed. Discretization and transformation of the
scalar potential are performed as usual in the method of lines

[3]. [4].

A. First Step: Discretization of the Wave Equation

Both waveguides (Region I, II) are discretized with the
same discretization distance h,. Different line numbers Ny
and Ny result, which are approximately proportional to the
waveguide heights. As the mode numbers Af; are equal to the
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line numbers N,, the criterion to avoid relative convergence
after Mittra et al. [8]

My /My = by/by ®)
is fulfilled naturally in the MoL.

We discretize the Helmholtz equation

Py ¢

R Nap+ epth =0 @

using the following finite difference expression for the second
derivative

9? i+l — 295 i o\
Y| i — 29+ L (R)"DDy )

07 |, h2
to obtain
i TN
R ()‘il - (hy) 2Dyy -eD)Yp=0 (6)

The difference operator D,,,, has different sizes Ny and Nyg in
the two regions. As D, is a tridiagonal matrix, the discretized
wave equation (6) is a system of coupled ordinary equations
for the discretized potential 1.

B. Second Step: Transformation of the Potentials

We transform to diagonal form by

(ﬁy)_thDny = _5‘5 (N

where ¢ denotes transpose. The transformation matrices T 11
and the eigenvalue matrices ;\L’H are different for the two
waveguides. The difference operators D, and the transfor-
mation matrices T are calculated according to the Neumann
boundary conditions on both side walls [4].
We transform the discretized wave (6) and obtain a system
of uncoupled ordinary differential equations
o
%— (J\il—i—)\i—e,l)zﬁzﬂ (8)

>4

r2
for the transformed potential 9 = T*y with the propagation
constants I', which are diagonal matrices.

The transformed potentials result as the solutions of the
wave equation (8):

Waveguide 1 Waveguide II

,‘7)1 — C‘FIZAI + eF[Z’BI ,‘7111 — EFHZAII + e—FHZBII

C. Third Step: Field Matching at the Step z = 0

The transverse field components F, and H,, that means
1 and 91 /0z must be matched. If 1) is matched on all the
discretization lines, 0v /0y and thus I, is also matched. In
the transform domain we obtain at z = 0

17)1 =Al 4+ B! 17)11 = All 4 BI
o _
5 =

- 11
___I-vI(AI _ BI) %1/;_ — FH(AII _ BH)

In the vectors A! and A only the first element is non-zero
for excitation with the fundamental mode.

The matching has to be achieved in spatial domain af-
ter the inverse transformation. To this end we partition the
transformation matrix T'y; into two submatrices

TT
Tu = y] ©)
. I:TII

TT; corresponds to the aperture part of waveguide /1 opposite
waveguide I (full lines in Fig. 2) and hence has the same
number of rows Ni; = Np as T;. Tf corresponds to the
front plate (broken lines in Fig. 2) with Njj = Ny — Np
The two matching steps are
1) Matching of H,, that means of ), as the factor
(60 — A2)sin \,Z (see (2)) is the same for both
waveguides and for all components of H,. This yields

Ti(A'+ BY) = T, (A" + BY) (10)

2) Matching of E,,, that means of %? (see (2)), yields

in the aperture I-II

~Ti1 (A" - BY) = T (AT - BY) (11
on the front plate II
0= Tirn(A"-BY) (12

D. Transmission Matrix and Scattering Matrix
For the calculation of the transmission matrix we combine
the matching equations (10), (11) to the following system
A'+B'=T(B" + A") (13)
A' - B'=17'Tr;(B" - AT (14)
with the abbreviation T = T}{T7; (see App.). We solve this
system of equations for the wave coefficients in the smaller

waveguide I. With (12) we obtain the transmission matrix
equation

Al T, T_
BII
0 | = |Tilu ~Tiln [ } (15)
N AII
B! T_ T,
with the submatrices
- 1
Ty = (T ;' TIy) (16)

Using (15) the incoming and outgoing waves at the smaller
waveguide I are computed from the incoming and outgoing
waves at the larger waveguide II. To compute the waves
reversely, namely from the smaller waveguide I to the larger
11, is only possible with Ny; — Ny additional equations. An
alternative way is to use the scattering matrix.

For the calculation of the scattering matrix we solve the
transmission matrix (15) for B! and B!L. For the amplitudes
of the outgoing waves we obtain

T, | S Al
an
0 +TIn| [A6

-1
BII —

Thl'n
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Fig. 3. Discretization of a displacement.

B! is computed from the last line of (15).
For the calculation of the scattering matrix for the funda-
mental modes, which is defined according to

B! S 8][4l
- (18)

Bl Sa1 Spe | | A6

we set the excitations A} and AL to zero individually.

IV. MODIFICATIONS FOR DISPLACEMENT AND DIAPHRAGM

In the case of a diaphragm or a displacement, (Fig. 3) none
of the two waveguides is completely included in the other one.
This is the only difference to the step discontinuity, hence
the analysis runs as above with the following modifications.
We have to distinguish an aperture region (full lines) and an
additional front plate (broken lines) also for the waveguide I
in contrast to the step discontinuity (Fig. 2).

Hence we have to partition the transformation matrix Ty

as well:
_|T7
= {Tf}

with TT for the aperture and T7 for the front plate. This results
in two changes in the analysis. First we replace T1 by TY in
matching equations (10) to (12) and second we obtain the
additional equation

19)

on the front plate I~ T{T (A'-B') =0 (20)
Equation (14) is still valid, if T is replaced by T’ = T}*T1,.
But the equation corresponding to (10) cannot be converted
into the form of (13) any more, as T7 itself is not invertible.
The number of equations for A! and B! is no longer sufficient
to calculate the transmission matrix.

We are still able to determine the scattering matrix, how-
ever, in an analogous way as above.

With
T =17y
and the following substitution

~ - 1
Ty — T, = (Tf + T{I ' T'Ty)
which considers T7 as an additional factor, we obtain by
reordering of (14) and from the first line of (15):

~

| S I T
BI AI
=, _ - ~
0 T+ BII I _T/‘* }:AH:I (21)
0 T§{Ip 0 +TiHIn

[S11] 4

i a=2b l
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Fig. 4. Symmetric E-plane step discontinuity. Magnitude of the reflection
coefficient as a function of normalized frequency. Cut-off frequencies are
marked. With free space wavelength Ag. 0 0 0 MMT [1].
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Fig. 5. Side view and equivalent circuit of a diaphragm.

Thus the amplitudes of the outgoing waves are given by:

T 17 [T -1 ][Al
BH:

T¢Iy 0

(22)
+Tf1:[‘ II AII
B! is computed from the first line of (21) and the scattering
matrix of the fundamental modes ist determined by relation
(18) again.

V. RESULTS

The scattering parameters or the resulting equivalent circuit
parameters for various discontinuities are presented and com-
pared with results from literature. For the symmetric £-plane
step discontinuity the magnitude of the reflection coefficient
is given in Fig. 4 as a function of normalized frequency. The
agreement with the mode matching technique (MMT) [1] is
good, even for the marked values of the cut-off frequencies.

The next three structures are analyzed with the approach
of Section IV. For the step discontinuity with diaphragm in
a parallel plate wavegude (Fig. 7) the junction susceptance B
normalized with respect to the TEM admittance Y of the
first waveguide is given by

5B _1+5u
ITEIY T 18,

Y20 bl

Yy by

This formula is also valid for the diaphragm alone (Fig. 5). The
results in Fig. 6 are in very good agreement with Marcuvitz
[8].

In Fig. 7 the normalized susceptance of a step with a
diaphragm is compared with results from the conservation of
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Fig. 6. Susceptance of a diaphragm in a rectangular waveguide. + + + [9].

0.0 ————

0.6

d/b—e
Fig. 7. Step with a diaphragm in a parallel plate waveguide. Normalized
susceptance B versus diaphragm height. ¢[10]- — —[11].

complex power technique (CCPT) [10] and the finite element
method (FEM) [11]. The deviation of two data points from the
CCPT is probably due to a distortion in the diagram in [10].
In Table I excellent agreement (better than 0.04%) is found
with the MMT [2] for the shunt reactance of a displacement
(Fig. 8). These results were obtained for an average line
number n’ = 50 in the discontinuity corrésponding to [2].
Thus the convergence of the method of lines is very good.

VI. CONCLUSION

The principles of the E-plane junction analysis by the MoL.,
are demonstrated. The modelling of a step discontinuity leads
to simple matrix equations, which are extended to displace-
ments and diaphragms in a straightforward manner. As the line
numbers in different waveguides are always chosen correctly
in the MoL, relative -convergence is automatically avoided.
The equivalent circuit parameters of the above mentioned
discontinuities, and of the combination of step discontinuity
and diaphragm, agree very well with literature.

APPENDIX TRANSFORMATION MATRICES AND
CHARACTERISTIC VALUES FOR THE WAVEGUIDE STEP

The product of the transformation matrices T? and T7
yields:

T b’ b Z @ x 2
L—I_\__L
Fig. 8. Side view and equivalent circuit of a displacement.

TABLE I
NORMALIZED SHUNT REACTANCE X/Zg - b/ Ay OF
AN E-PLANE OFFSET IN TERMS OF NORMALIZED
FREQUENCY 2b/Ay AND FRACTIONAL DisPLACEMENT V' /b
UpPER VALUES: MoL; Lower VALUES: MMT [2]

2b/ X,
X »
Zo Ag
0.2 0.4 0.6 0.8
0.1 | 0063422 | 0061026 | 0.056362 | 0.047273
0.063407 | 0061017 | 0056353 | 0.047260
03 | 0.14057 0.13272 0.11799 | 0.091598
0.14058 0.13270 0.11795 | 0.091599
v/p| 05 | 029767 0.27957 024607 | 0.18768
0.29769 0.27961 0.24608 | 0.18772
07 | 079752 0.75734 067323 | 052797
0.79744 0.75423 0.67308 | 0.52786
0.9 5.8077 5.5943 5.1707 4.3350
5.8069 5.5026 5.1699 43343
T - L (2 = 8i0)(2 — bx0)
*7 3 N1y
Ni—1
x Y (cos(au + Br) — cos(ai — Brr))  (23)
=0
with

. 1\ 2o
il (l+2)NI (i 1—1)

Bri (l+l+Ns)£7L

Ek=0.--- Nyt —1
2 N ( u—1)

The characteristic values run for NN boundaries

Xyi = holsin oo (24)
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